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Abstract. In the last few years multivariate public key cryptography has experienced
an infusion of new ideas for encryption. Among these new strategies is the ABC Simple
Matrix family of encryption schemes which utilize the structure of a large matrix algebra to
construct effectively invertible systems of nonlinear equations hidden by an isomorphism of
polynomials. One promising approach to cryptanalyzing these schemes has been structural
cryptanalysis, based on applying a strategy similar to MinRank attacks to the discrete
differential. These attacks however have been significantly more expensive when applied to
parameters using fields of characteristic 2, which have been the most common choice for
published parameters. This disparity is especially great for the cubic version of the Simple
Matrix Encryption Scheme.

In this work, we demonstrate a technique that can be used to implement a structural
attack which is as efficient against parameters of characteristic 2 as are attacks against
analogous parameters over higher characteristic fields. This attack demonstrates that, not
only is the cubic simple matrix scheme susceptible to structural attacks, but that the
published parameters claiming 80 bits of security are less secure than claimed (albeit only
slightly.) Similar techniques can also be applied to improve structural attacks against the
original Simple Matrix Encryption scheme, but they represent only a modest improvement
over previous structural attacks. This work therefore demonstrates that choosing a field
of characteristic 2 for the Simple Matrix Encryption Scheme or its cubic variant will not
provide any additional security value.

Key words: multivariate public key cryptography, differential invariant, MinRank, en-
cryption

1 Introduction

The National Institute of Standards and Technology (NIST) is currently engaged in an effort to
update the public key infrastructure, providing alternatives to the classical public key schemes
based on arithmetic constructions. The discovery by Peter Shor in the 1990s of efficient algorithms
for factoring and computing discrete logarithms, see [1], accelerated research towards building
the necessary class of computers, those that Feynman famously suggested in [2]: quantum com-
puters. There has been growing interest among scientists in our discipline in the years since, to
provide protocols and algorithms that are post-quantum, that is, secure in the quantum model
of computing. The recent publication by (NIST), see [3], of a call for proposals for post-quantum
standards directly addresses the challenge of migration towards a more diverse collection of tools
for our public key infrastructure.



2 D Moody, R Perlner, & D Smith-Tone

Public key schemes based on the difficulty of inverting nonlinear systems of equations provide
one possibility for post-quantum security. Multivariate Public Key Cryptography (MPKC) is a
reasonable option because the problem of solving systems of nonlinear equations, even if only
quadratic, is known to be NP-complete; thus, the generic problem is likely beyond the reach
of quantum adversaries. Furthermore, there are a variety of standard techniques to metamor-
phosize multivariate schemes, to introduce new properties, to enhance security, to reduce power
consumption, to resist side-channel analysis, etc.

There are numerous long-lived multivariate digital signature schemes. All of UOV [4], HFE-
[5], and HFEv- [6] have been studied for around two decades. Moreover, some of the above
schemes have optimizations which have strong theoretical support or have stood unbroken in
the literature for some time. Notable among these are UOV, which has a cyclic variant [7] that
dramatically reduces the key size, and Gui [8], an HFEv- scheme, that, due to tighter bounds
on the complexity of algebraically solving the underlying system of equations, see [9], has much
more aggressive parameters than QUARTZ, see [6].

Multivariate public key encryption, however, has a much rockier history. Several attempts at
multivariate encryption, see [10, 11] for example, have been shown to be weak based on rank or
differential weaknesses. Recently, a new framework for developing secure multivariate encryption
schemes has surfaces, drawing on the idea that it may impose sufficiently few restrictions on a
multivariate map to be merely an injective map into a much larger codomain instead of being
essentially a permutation. A few interesting attempts to achieve multivariate encryption have
originated from this thought. ZHFE, see [12], the quadratic and cubic variants of the ABC
Simple Matrix Scheme, see [13] and [14], and Extension Field Cancellation, see [15], all use
fundamentally new structures for the derivation of an encryption system.

A few of the above schemes have already suffered some setbacks. A questionable rank property
in the public key of ZHFE presented in [16] makes this scheme appear dubious, while it was shown
that the quadratic Simple Matrix structure leaves the signature of a differential invariant in the
public key which is exploited in [17] to effect an attack.

The case of the Cubic Simple Matrix encryption scheme is more interesting; the authors in [14]
present a heuristic argument for security and suggest the possibility of provable security for the
scheme. These provable security claims were undermined in [18], however, with the presentation
of a key recovery attack on a full scale version of the Cubic Simple Matrix encryption scheme. The
complexity of the attack was on the order of qs+2 for characteristic p > 3, qs+3 for characteristic
3, and q2s+6 for characteristic 2. Here s is the dimension of the matrices in the scheme, and q
is the cardinality of the finite field used. This technique was an extension and augmentation of
the technique of [17], and similarly exploited a differential invariant property of the core map
to perform a key recovery attack. Nonetheless, the much higher complexity of this attack for
characteristic 2 left open the possibility that there may be some security advantage to using a
cubic ABC map over a field with characteristic 2.

In this paper, we present an attack whose complexity is on the order of qs+2 for all charac-
teristics. Similar techniques can also improve the complexity of attacks against characteristic 2
parameters for the original quadratic version of the ABC cryptosystem, from qs+4 (reported in
[17]) to qs+2.

Specifically, our technique improves the complexity of attacking CubicABC(q = 28,s = 7),
designed for 80-bit security, from the horrendous value of 2177 in [18] to approximately 288

operations, the same as the direct algebraic attack complexity reported in [14]. More convincing
is our attack on CubicABC(q = 28,s = 8), designed for 100-bit security. We break the scheme
in approximately 298 operations. Furthermore, the attack is fully parallelizable and requires very
little memory; hence, our technique is asymptotically far more efficient than algebraic attacks,
the basis for the original security estimation. Thus, the security claims in [14] not only fail to
hold in the odd characteristic case, they fail to hold in characteristic two as well.
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The paper is organized as follows. In the next section, we present the structure of the Cubic
ABC Simple Matrix encryption scheme. In the following section, the fingerprint of the matrix
algebra used in the construction of the ABC scheme is exposed. In the subsequent section, the
effect of this structure on minrank calculations is determined. We then calculate the complexity of
the full attack including the linear algebra steps required for full key recovery. Finally, we review
these results and discuss the security of the Cubic ABC scheme and its quadratic counterpart
moving forward.

2 The Cubic ABC Matrix Encryption Scheme

In [14], the Cubic ABC Matrix encryption scheme is proposed. The motivation behind the scheme
is to use a large matrix algebra over a finite field to construct an easily invertible cubic map. The
construction uses matrix multiplication to combine random linear and quadratic formulae into
cubic formulae in a way that allows a user with knowledge of the structure of the matrix algebra
and the polynomial isomorphism used to compose the scheme to invert the map.

Let k = Fq be a finite field. Linear forms and variables over k will be denoted with lower case
letters. Vectors of any dimension over k will be denoted with bold font, v. Fix s ∈ N and set n = s2

and m = 2s2. An element of a matrix ring Md(k) or the linear transformations they represent,
will be denoted by upper case letters, such as M . When the entries of the matrix are being
considered functions of a variable, the matrix will be denoted M(x). Let φ : Ms×2s(k) → k2s

2

represent the vector space isomorphism sending a matrix to the column vector consisting of the
concatenation of its rows. The output of this map, being a vector, will be written with bold font;
however, to indicate the relationship to its matrix preimage, it will be denoted with an upper
case letter, such as M.

The scheme utilizes an isomorphism of polynomials to hide the internal structure. Let x =[
x1, x2, . . . , xn

]> ∈ kn denote plaintext while y =
[
y1, . . . , ym

]
∈ km denotes ciphertext. Fix two

invertible linear transformations T ∈ Mm(k) and U ∈ Mn(k). (One may use affine transforma-
tions, but there is no security or performance benefit in doing so.) Denote the input and output
of the central map by u = Ux and v = T−1(y).

The construction of the central map is as follows. Define three s× s matrices A, B, and C in
the following way:

A =


p1 p2 · · · ps
ps+1 ps+2 · · · p2s

...
...

. . .
...

ps2−s+1 ps2−s+2 · · · ps2

 , B =


b1 b2 · · · bs
bs+1 bs+2 · · · b2s

...
...

. . .
...

bs2−s+1 bs2−s+2 · · · bs2

 ,
and

C =


c1 c2 · · · cs
cs+1 cs+2 · · · c2s

...
...

. . .
...

cs2−s+1 cs2−s+2 · · · cs2

 .
Here the pi are quadratic forms on u chosen independently and uniformly at random from among
all quadratic forms and the bi and ci are linear forms on u chosen independently and uniformly
at random from among all linear forms.

We define two s× s matrices E1 = AB and E2 = AC. Since A is quadratic and B and C are
linear in ui, E1 and E2 are cubic in the ui. The central map E is defined by

E = φ ◦ (E1||E2).
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Thus E is an m dimensional vector of cubic forms in u. Finally, the public key is given by
F = T ◦ E ◦ U .

Encryption with this system is standard: given a plaintext (x1, . . . , xn), compute (y1, . . . , ym) =
F(x1, . . . , xn). Decryption is somewhat more complicated.

To decrypt, one inverts each of the private maps in turn: apply T−1, invert E , and apply U−1.
To “invert” E , one assumes that A(u) is invertible, and forms a matrix

A−1(u) =


w1 w2 · · · ws
ws+1 ws+2 · · · w2s

...
...

. . .
...

ws2−s+1 ws2−s+2 · · · ws2

 ,
where the wi are indeterminants. Then collectinging the relations A−1(u)E1(u) = B(u) and
A−1(u)E2(u) = C(u), we have m = 2s2 linear equations in 2n = 2s2 unknowns wi and ui.
Using, for example, Gaussian elimination one can eliminate all of the variables wi and most of
the ui. The resulting relations can be substituted back into E1(u) and E2(u) to obtain a large
system of equations in very few variables which can be solved efficiently in a variety of ways.

3 The Structure of the Cubic ABC scheme

3.1 Column Band Spaces

Each component of the central E(u) = E1(u)||E2(u) map may be written as:

E(i−1)s+j =

s∑
l=1

p(i−1)s+lb(l−1)s+j ,

for the E1 equations, and likewise, for the E2 equations:

Es2+(i−1)s+j =

s∑
l=1

p(i−1)s+lc(l−1)s+j

where i and j run from 1 to s.

Consider the s sets of s polynomials that form the columns of E1, i.e. for each j ∈ {1, . . . , s}
consider (Ej , Es+j , . . . , Es2−s+j). With high probability, the linear forms bj , bs+j , . . . , bs2−s+j are
linearly independent, and if so the polynomials may be re-expressed, using a linear change of
variables to (u′1, . . . u

′
s2) where u′i = b(i−1)s+j for i = 1, . . . , s. After the change of variables, the

only cubic monomials contained in (Ej , Es+j , . . . , Es2−s+j) will be those containing at least one
factor of u′1, . . . , u

′
s. We can make a similar change of variables to reveal structure in the s sets

of s polynomials that form the columns of E2: Setting u′i = c(i−1)s+j for i = 1, . . . , s and a fixed
j, the only cubic monomials contained in (Es2+j , Es2+s+j , . . . , E2s2−s+j) will be those containing
at least one factor of u′1, . . . , u

′
s.

More generally, we can make a similar change of variables to reveal structure in any of a large
family of s dimensional subspaces of the span of the component polynomials of E1 and E2, which
we will call column band spaces in analogy to the band spaces used to analyze the quadratic
ABC cryptosystem in [17]. Each family is defined by a fixed linear combination, (β, γ), of the
columns of E1 and E2:
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Definition 1 The column band space defined by the 2s-dimensional linear form (β, γ) is the
space of cubic maps, Bβ,γ , given by:

Bβ,γ = Span(Eβ,γ,1, . . . , Eβ,γ,s),

where

Eβ,γ,i =

s∑
j=1

(βjE(i−1)s+j + γjEs2+(i−1)s+j)

=

s∑
l=1

p(i−1)s+l s∑
j=1

(
βjb(l−1)s+j + γjc(l−1)s+j

) .

Note that under a change of variables

(x1, . . . , xs2)
M7−→ (u′1, . . . u

′
s2), where u′i =

s∑
j=1

(
βjb(i−1)s+j + γjc(i−1)s+j

)
for i = 1, . . . , s,

the only cubic monomials contained in the elements of Bβ,γ will be those containing at least one
factor of u′1, . . . , u

′
s.

In such a basis, the third formal derivative, or the 3-tensor of third partial derivatives

D3E =
∑
i,j,k

∂3E
∂u′i∂u

′
j∂u
′
k

du′i ⊗ du′j ⊗ du′k,

of any map E ∈ Bβ,γ has a special block form, see Figure 1. This tensor is the same as the one
used for the attack in [18], although in that case it was computed using the discrete differential.
There are, however, a number of disadvantages to using this 3-tensor to represent the structural
features of cubic ABC. In particular, when defined over a field of characteristic 2, the symmetry
of the 3-tensor results in the loss of any information about coefficients for monomials of the form
x2ixj , since the 3rd derivatave of such a monomial is always 0. We will therefore use a different
tool to express the structure of cubic ABC.

Using the same u′ basis as above, we see that the gradient ∇u′E produces a covector of
quadratic forms, which can be though of as a quadratic map that takes any vector w of the form

(0, . . . , 0, u′s+1(w), . . . , u′s2(w))>,

to a covector of the form
(y(u′1), . . . , y(u′s), 0, . . . , 0).

Note that, by the chain rule, we can relate ∇u′E =
[
∂E
∂u′

1
, . . . , ∂E

∂u′
s2

]
to the formal derivative

defined over the public basis:

∇E =

[
∂E
∂x1

, . . . ,
∂E
∂xs2

]
= ∇u′E

[
du′j
dxi

]
i,j

using the nonsingular change of basis matrix whose entries are
du′
j

dxi
. We can therefore conclude

that even defined over the public basis, the first formal derivative of any map E ∈ Bβ,γ is a
quadratic map that takes an s2 − s dimensional space of vectors to an s dimensional space of
covectors.

We will define the term “band kernel” to describe this s2 − s dimensional space of vectors
(including w) which are mapped to an s dimensonal image space by the first formal derivative
of E .
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Definition 2 The band kernel of Bβ,γ , denoted BKβ,γ , is the space of vectors x, such that

u′i =

s∑
j=1

(
βjb(i−1)s+j(x) + γjc(i−1)s+j(x)

)
= 0,

for i = 1, . . . , s.

x1

x2

x3

Fig. 1. 3-tensor structure of the third formal derivative of a band space map. Solid regions correspond
to nonzero coefficients. Transparent regions correspond to zero coefficients.

4 A Variant of MinRank Exploiting the Column Band Space
Structure

A minrank-like attack may be used to locate the column band space maps defined in the previous
section. In this case, the attack proceeds by selecting s2-dimensional vectors w1 and w2, setting

2s2∑
i=1

ti∇Ei(w1) = 0,

2s2∑
i=1

ti∇Ei(w2) = 0,

(1)

and then solving for the ti. The attack succeeds when
∑2s2

i=1 tiEi ∈ Bβ,γ , and x1 and x2 are within
the corresponding band kernel. If these conditions are met, then the 2-tensors

2s2∑
i=1

tiH(Ei)(w1) and

2s2∑
i=1

tiH(Ei)(w2),
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will have rank at most 2s (see Figure 2), and this will be easily detectable. Here H(Ei) is the
Hessian matrix

H(Ei) :=


∂2Ei
∂x2

1

∂2Ei
∂x1∂x2

· · · ∂2Ei
∂x1∂xn

∂2Ei
∂x1∂x2

∂2Ei
∂x2

2
· · · ∂2Ei

∂x1∂xn
...

...
. . .

...
∂2Ei

∂xn∂x1

∂2Ei
∂xn∂x2

· · · ∂2Ei
∂x2
n

 .

Theorem 1 The probability that 2 randomly chosen vectors, w1 and w2, are both in the band
kernel of some band space Bβ,γ is approximately 1

q−1 .

Proof. The condition that the w1 and w2 are contained within a band kernel is that there be a
nontrivial linear combination of the columns of the following matrix which is equal to zero (i.e.
that the matrix has nonzero column corank):

b1(w1) b2(w1) . . . bs(w1) c1(w1) c2(w1) . . . cs(w1)
bs+1(w1) bs+2(w1) . . . b2s(w1) cs+1(w1) cs+2(w1) . . . c2s(w1)

...
...

. . .
...

...
...

. . .
...

bs2−s+1(w1) bs2−s+2(w1) . . . bs2(w1) cs2−s+1(w1) cs2−s+2(w1) . . . cs2(w1)
b1(w2) b2(w2) . . . bs(w2) c1(w2) c2(w2) . . . cs(w2)
bs+1(w2) bs+2(w2) . . . b2s(w2) cs+1(w2) cs+2(w2) . . . c2s(w2)

...
...

. . .
...

...
...

. . .
...

bs2−s+1(w2) bs2−s+2(w2) . . . bs2(w2) cs2−s+1(w2) cs2−s+2(w2) . . . cs2(w2)


.

The matrix is a uniformly random 2s× 2s matrix, which has nonzero column corank with prob-
ability approximately 1

q−1 . ut

Theorem 2 If w1 and w2 are chosen in such a way that they are both in the band kernel of a
column band space Bβ,γ , and they are linearly independent from one another and statistically in-
dependent from the private quadratic forms, p(i−1)s+j in the matrix A, then w1 and w2 are both in
the kernel of the first formal derivative of some column band space map, E =

∑
Eβ,γ,i∈Bβ,γ τiEβ,γ,i

with probability approximately 1
(q−1)qs .

Proof. An E meeting the above condition exists iff there is a nontrivial solution to the following
system of equations ∑

Eβ,γ,i∈Bβ,γ

τi∇Eβ,γ,i(w1) = 0,

∑
Eβ,γ,i∈Bβ,γ

τi∇Eβ,γ,i(w2) = 0.
(2)

We may express our band space maps in a basis (e.g. the u′i basis used in Definition 2) where
the first s basis vectors are chosen to be outside the band kernel, and the remaining s2 − s basis
vectors are chosen from within the band kernel. Combining this with Definition 1, we see that
the band space maps can be written as

Eβ,γ,i =

s∑
j=1

p(i−1)s+ju
′
j .
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Note that w1 and w2 are band kernel vectors, and so for both vectors we have that u′j = 0 for
j = 1, . . . , s. Therefore, in such a basis, the only formal derivatives of E that can be nonzero are
∂E
∂u′

j
= p(i−1)s+j for j = 1, . . . , s. Thus in order for there to be a nontrivial solution to Equation

(2), it is necessary and sufficient that
∑s
i=1 τip(i−1)s+j(wk) = 0 for j = 1, . . . , s and k = 1, 2.

This condition will be satisfied if and only if the following 2s × s matrix has nonzero column
corank: 

p1(w1) ps+1(w1) · · · ps2−s+1(w1)
p2(w1) ps+2(w1) · · · ps2−s+2(w1)

...
...

. . .
...

ps(w1) p2s(w1) · · · ps2(w1).
p1(w2) ps+1(w2) · · · ps2−s+1(w2)
p2(w2) ps+2(w2) · · · ps2−s+2(w2)

...
...

. . .
...

ps(w2) p2s(w2) · · · ps2(w2)


.

This matrix is a random matrix over k = Fq, which has nonzero column corank with probability
approximately 1

(q−1)qs , for practical parameters. ut

Combining the results of Theorems 1 and 2, we find that for a random choice of the vectors
w1 and w2, there is a column band space map among the solutions of Equation (1) with proba-
bility approximately 1

(q−1)2qs . It may be somewhat undesirable to choose w1 and w1 completely

randomly, however. The näıve algorithm for constructing the coefficients of Equation (1) for a
random choice of w1 and w2 requires on the order of s8 field operations. This can be reduced
to s6 operations if we make sure that each new choice of w1 and w2 differs from the previous
choice at only a single coordinate. Then, rather than recomputing Equation (1) from scratch, we
can use the previous values of the coefficients and we will only need to include corrections for the
monomials that contain the variable that was changed from the previous iteration. Over a large
number of iterations, the distribution of w1 and w2 should still be sufficiently close to random
that the probability of success for the attack will not be meaningfully altered.

One final factor which may increase the cost of attacks is the expected dimension of the
solution space of Equation (1). If this space has a high dimension, then the attack will be slowed
down since the attacker much search through a large number of spurious solutions to find a

real solution (i.e. one where
∑2s2

i=1 tiH(Ei)(wl) has rank at most 2s for l = 1, 2). Fortunately,
Equation (1) is a system of 2s2 equations in 2s2 variables and it generally has a 0-dimensional
space of solutions. The lone exception occurs for characteristic 3. In this case, there are two linear
dependencies among the equations, given by w1 [∇Ei(w1)]

>
= 0 and w2 [∇Ei(w2)]

>
= 0. In this

situation we would therefore expect a 2-dimensional solution space. We can, however, recover
two additional linear constraints on the ti’s by also requiring:

2s2∑
i=1

tiEi(wl) = 0, for l = 1, 2.

When these additional linear constraints are added to those given by Equation (1), the expected
dimension of the solution space drops back to 0. We can therefore assess the cost of the above
attack at approximately s6qs+2, regardless of the characteristic.

5 Application to the Quadratic ABC Scheme

A similar technique was used to attack the original quadratic version of the ABC cryptosytem
in [17]. While this technique was expressed in terms of the discrete differential, it can also be
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expressed using the formal derivative. In that case, the attack proceeds by selecting two random
vectors w1 and w2, and solving an equation identical to Equation (1) for ti, where the Ei are

quadratic rather than cubic. The attack succeeds when
∑2s2

i=1 tiH(Ei) has low rank.
When this attack is applied to parameters chosen over a field with characteristic 2, it is less

efficient for the same reason as the basic attack given in the previous section is less efficient
for the characteristic 3 parameters: the 2s2 linear equations given by Equation (1) have three

linear dependencies given by w1 [∇Ei(w1)]
>

= 0, w2 [∇Ei(w2)]
>

= 0, and w1 [∇Ei(w2)]
>

+

w2 [∇Ei(w1)]
>

= 0, and the attacker must generally search through a 3-dimensional solution
space of spurious solutions in order to find a 1-dimensional space of useful solutions. As a result,
the complexity of the attack for characteristic 2 is s2ωqs+4, instead of s2ωqs+2, as it is for all
other characteristics. (ω ≈ 2.373 is the linear algebra constant.)

However, just as with cubic ABC parameters of characteristic 3, we can add two additional
linear constraints and reduce the expected dimension of the solution space to 1:

2s2∑
i=1

tiEi(wl) = 0, for l = 1, 2.

Thus, we can also reduce the attack complexity for quadratic ABC parameters with characteristic
2 to s2ωqs+2.

6 Completing the Key Recovery

Once the MinRank instance is solved, key extraction proceeds in a similar manner to [18, Section
6] in the cubic case and [17, Section 6]. Here we discuss the cubic version.

First, note that U is not a critical element of the scheme. If A is a random matrix of quadratic
forms and B and C are random matrices of linear forms, then so are A ◦U , B ◦U and C ◦U for
any full rank map U . Thus, since T ◦ φ(AB||AC) ◦ U = T ◦ φ((A ◦ U)(B ◦ U)||(A ◦ U)(C ◦ U)),
we may absorb the action of U into A, B, and C, and consider the public key to be of the form

P (x) = T ◦ φ(AB||AC)(x).

Let E ∈ Bβ,γ , and consider H(E). For w1 and w2 in the band kernel corresponding to Bβ,γ ,
there is a basis in which both H(E)(w1) and H(E)(w2) have the form illustrated in Figure 2.
Thus, for s ≥ 3, with high probability the kernels of both maps are contained in the corresponding
band kernel Bβ,γ , and span{ker(H(E)(w1), ker(H(E)(w2)} = Bβ,γ .

Given the basis for an s2− s dimensional band kernel BK, we may choose a basis {v1, . . . , vs}
for the subspace of the dual space vanishing on BK. We can also find a basis Ev1 , . . . , Evs for the
band space itself by solving the linear system∑

Ei

τiEi(w1) = 0,

∑
Ei

τiEi(w2) = 0,

... =
...∑

Ei

τiEi(wt) = 0,

where t ≈ 2s2 and wi is in the band kernel.
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Fig. 2. Structure of H(E)(w) when E ∈ Bβ,γ and w is in the band kernel corresponding to the band
space Bβ,γ . The shaded region corresponds to nonzero coefficients.

Since the basis Ev1 , . . . , Evs is in a single band space, there exists an element
[
b′1 · · · b′s

]>
in

ColumnSpace(B||C), and two matrices Ω1 and Ω2 such that

Ω1A

Ω2

b
′
1
...
b′s


 =: A′


v1...
vs


 =

Ev1...
Evs

 .
Solving the above system of equations over Fq[x1, . . . , xs2 ] uniquely determines A′ in the quo-
tient Fq[x1, . . . , xs2 ]/ 〈v1, . . . , vs〉. To recover all of A′, note that the above system is part of an
equivalent key

F = T ′ ◦A′(B′||C ′)

where
[
v1 · · · vs

]>
is the first column of B′.

Applying T ′−1 to both sides and inserting the information we know we may construct the
system

A′(B′||C ′) = T ′−1F . (3)

Solving this system of equations modulo 〈v1, . . . , vs〉 for B′, C ′ and T ′−1 we can recover a space
of solutions, which we will restrict by arbitrarily fixing the value of T ′−1. Note that the elements
of T ′−1 are constant polynomials, and therefore T ′−1(mod 〈v1, . . . , vs〉) is the same as T ′−1. Thus,
for any choice of T ′−1 in this space, the second column of T ′−1F is a basis for a band space.
Moreover, the elements v′s+1, . . . , v

′
2s of the second column of B′(mod 〈v1, . . . , vs〉) are the image,

modulo 〈v1, . . . , vs〉, of linear forms vanishing on the corresponding band kernel. Therefore, we
obtain the equality (

s⋂
i=1

ker(vi)

)⋂(
2s⋂

i=s+1

ker(v′i)

)
= BK2 ∩ BK1,

the intersection of the band kernels of our two band spaces.

We can reconstruct the full band kernel of this second band space using the same method we
used to obtain our first band kernel. We take a map E2 from the second column of T ′−1F , and two
vectors wa and wb from BK2∩BK1, and we compute BK2 = span{ker(H(E2)(wa) ∪ ker(H(E2)(wb)}.
We can now solve for the second column of B′,

[
vs+1 · · · v2s

]>
, uniquely over Fq[x1, . . . , xs2 ]

(NOT modulo 〈v1, . . . , vs〉) by solving the following system of linear equations:
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vi ≡ v′imod 〈v1, . . . , vs〉 ,
vi(w1) = 0,

vi(w2) = 0,

... =
...

vi(ws2−s) = 0,

where i = s+ 1, . . . , 2s, and {w1, . . . ,ws2−s} is a basis for BK2. We can now solve for A′ (again,
uniquely over Fq[x1, . . . , xs2 ]) by solving:

A′


v1...
vs


 ≡

Ev1...
Evs

mod 〈v1, . . . , vs〉 ,

A′


vs+1

...
v2s


 ≡

Evs+1

...
Ev2s

mod 〈vs+1, . . . , v2s〉 ,

where
[
Evs+1 · · · Ev2s

]>
is the second column of T ′−1F . This allows us to solve Equation (3) for

the rest of B′ and C ′, completing the attack.
The primary cost of the attack involves finding the band space map. The rest of the key

recovery is additive in complexity and dominated by the band space map recovery; thus the total
complexity of the attack is of the same order as the band space map recovery. Hence, the cost of
private key extraction is approximately qs+2s6 for all characteristics.

The original parameters of Cubic ABC were designed for a security level of 80-bits and 100-
bits. Since NIST has been recommending a security level of 112-bits since 2015, see [19], these
figures may be a bit out of date. In fact, our attack seems more effective for larger parameter
sets than small.

We note that our attack breaks CubicABC(q = 28, s = 7), designed for 80-bit security, in
approximately 288 operations. More convincingly, our attack breaks CubicABC(q = 28, s = 8),
designed for 100-bit security, in approximately 298 operations, indicating that for parameters as
small as these, we have already crossed the threshold of algebraic attack efficiency. Furthermore,
the attack is fully parallelizable and requires very little memory. Hence, this technique is asymp-
totically far more efficient than algebraic attacks, the basis for the original security estimation
in [14].

In the case of the quadratic ABC scheme, the original 86-bit secure parameters ABC(q =
28, s = 8). The attack complexity with the new methodology presented here is 287, just above
the claimed level. We note, however, that the authors of [13] supplied additional parameters using
odd characteristic in their presentation at PQCRYPTO 2013, see [20], with a claimed security
level of 108-bits. This scheme, ABC(q = 127, s = 8) offers resistance only to the level of 277 to
our slight improvement in technique over that of [17]. Thus, our attack definitively breaks these
parameters.

7 Comparison with Minors Methods

The MinRank problem has been a central computational challenge related to the security of
various multivariate schemes since the beginning of the century, and as discussed in the previous
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section, is the primary bottleneck of our attack. There are two main disparate techniques for
solving MinRank.

The first technique, which we employ here, can be called “linear algebra search.” The linear
algebra search technique randomly selects vectors x1, . . . ,x` ∈ kn in an attempt to solve a system
of equations of the form: (

m∑
i=1

tiMi

)
xj = 0 for j ∈ {1, . . . , `}.

The technique is essentially free in terms of memory, but is exponential in q, the size of k. The
linear algebra search can benefit from certain exponential speedups depending on the structure
of the equations. In particular, the linear algebra search is exponentially faster in the case of
“interlaced kernels” as specified in [21] or in the case of differential invariants, as in the case of
the original ABC scheme, see [17].

The second technique is known as minors modeling. Given an instance of minrank, M1, . . . ,Mm

with target rank r, construct the matrix

m∑
i=1

yiMi,

with entries in k[y1, . . . , ym]. Since there is an assignment of values of the yi in k such that the
resulting matrix has rank r, via the Finite Field Nullstellensatz, the system of r+1×r+1 minors
of this matrix, along with the field equations yqi − yi, form a positive dimensional ideal. Fixing a
variable to a nonzero value by adding another equation, say y1 − 1 still statistically results in a
nonempty variety containing solutions to the MinRank problem.

The complexity of the minors modeling technique is dependent upon the degree of regularity
of minors system, though this can easily be seen for large systems to be r+1, since for sufficiently
large schemes the application of a Gröbner basis algorithm is equivalent to linearization. Thus the

complexity is O
((
m+r+1
r+1

)ω)
, where ω is the linear algebra constant. A serious drawback of this

technique is memory usage, which also nontrivially complicates the practical time complexity.

The space complexity of the minors approach can be roughly estimated as O
((
m+r
r+1

)2)
.

To make a direct comparison of these techniques for the MinRank portion of the attack, we
use the parameters q = 28 and s = 8 discussed in the previous section. Recall that the linear
algebra search technique requires memory on the order of s4q = 220 and that the time complexity
is about 287. For the minors modeling method, the space complexity can be computed from the
above estimates using m = 2s2 = 128 and r = 2s = 16 to be about 2144, roughly the square
root of the number of subatomic particles in the universe, and the time complexity is 2172. We
thus conclude that for such small values of q that the linear algebra search, due to the interlaced
nature of the kernels, is far more efficient. Furthermore, for ABC schemes, it is questionable
whether the memory constraints for the minors approach can ever be realistic.

8 Experiments

Using SAGE [22], we performed some experiments as a sanity check to confirm the efficiency of
our ideas on small scale variants of the Cubic ABC scheme. The computer used has a 64 bit
quad-core Intel i7 processor, with clock cycle 2.8 GHz. Rather than considering the full attack,
we were most interested in confirming our complexity estimates on the most costly step in the
attack, the MinRank instance. Given as input the finite field size q, and the scheme parameter
s, we computed the average number of vectors v required to be sampled in order for the rank of
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the 2-tensor H(E)(v) to fall to 2s. As explained in Section 4, when the rank falls to this level,
we have identified the subspace differential invariant structure of the scheme which can then be
exploited to attack the scheme.

As this paper is only concerned with binary fields, we ran experiments with q = 2, 4 and 8.
We found that for s = 3 and q = 2, 4, or 8, with high probability only a single vector was needed
before the rank fell to 2s. For s = 4 and s = 5, the computations were only feasible in SAGE for
q = 2 and q = 4. The average values obtained are presented in the table below. Note that for
q = 4 and s = 5 the average value is based on a small number of samples as the computation
time was quite lengthy.

s = 4 (q − 1)2qs s = 5 (q − 1)2qs

q = 2 24 16 35 32

q = 4 1962 2304 7021 9216
Table 1. Average number of vectors needed for the rank to fall to 2s versus the predicted values.

In comparison, our previous experiments [18] were only able to obtain data for q = 2 and
s = 4, 5. The average number of vectors needed in the s = 4 case was 244, while for s = 5, the
average number in our experiments was 994 (with the predicted values being 256 and 1024).

9 Conclusion

The ABC schemes offer an interesting new technique for the construction of multivariate pub-
lic key schemes. Previously, we have used the multiplicative structure of an extension field to
generate an efficiently invertible map. Schemes built on such a construct are known as “big
field” schemes. The ABC framework is essentially a “large structure” or perhaps “large algebra”
scheme, depending on multiplication from a matrix algebra over the base field. Since the only
simple algebras are either matrix algebras or field extensions, we seem to have exhausted the pos-
sibilities. Interestingly, MinRank techniques seem optimal in this setting, at least asymptotically
in the dimension of the extension.

Also interesting to note is the fact that the authors present in [14] a heuristic security argument
for the provable security of the scheme and reinforce the notion of provable security in this
venue at the presentation of the scheme at [23]. Unfortunately, this analysis does not contribute
a sound conclusion, as demonstrated by the methodology of [18]. With our improved attack,
we rule out the possibility that the cubic variant of ABC offers any security advantage over
the original quadratic scheme. Likewise, our improved attack on quadratic ABC eliminates any
security benefit associated with characteristic-2 parameters in the quadratic case.
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